物化法处理含PVA废水

(1)絮凝法
由于含PVA废水成分复杂,利用单一的絮凝剂处理难以发挥作用,通过联合使用多种絮凝剂可取得不错的处理效果。张洪荣等通过向调节混凝池中投加絮凝剂PAC和有机高分子助凝剂P30处理COD和BOD5分别为2 697、415 mg/L的含PVA废水,COD和BOD5去除率分别为44.68%和15.67%,可生化性由0.15提升到0.24。顾春雷等用自制的新型聚硅酸硫酸铝复合絮凝剂处理COD为22 736 mg/L的退浆废水,COD去除率达到73%。

近年来,有研究者将电化学法与传统絮凝法相结合发明了铁碳微电解法,其原理是电极反应生成的具有高活性的产物能够与体系中一些难降解污染物发生氧化还原反应,从而达到降解污染物的目的。肖冠南等采用铁碳微电解法处理含PVA废水,COD和PVA去除率可分别达到65%、85%以上。电絮凝法无需外加混凝剂,但需消耗大量电能,且电极易钝化,因此实际应用不多。

从机理上讲,絮凝法处理含PVA废水主要归因于金属氢氧化物的吸附和共沉淀作用,由于吸附和共沉淀能力有限,因此絮凝法只适用于含PVA浓度较高的废水的预处理。

(2)化学凝结法
基于盐析作用的化学凝结法(即向废水中投加无机盐电解质,由于电解质离子具有很强的水合能力而结合大量的水分子,当电解质离子浓度足够大时,可以使废水中的PVA分子因脱水而析出,从而回收PVA并达到降低COD的目的)处理含PVA废水,可获得较高的PVA回收率。徐竟成等采用化学凝结法(以硼砂为凝结剂,硫酸钠为盐析剂)处理含PVA废水,PVA回收率和COD去除率均达80%左右。

郭丽等采用化学凝结法处理低浓度含PVA废水(PVA<5 g/L)时发现,析出的PVA不容易形成大的凝胶团,有相当一部分是以微小胶体颗粒的形态悬浮于水中,难以被去除或收集。而且,回收的PVA因残余部分凝结剂,性能受到一定影响。化学凝结法会消耗大量的凝结剂与盐析剂,处理后水中盐浓度也较高,不利于后续生物处理,其常作为浓度较高、组分单一的含PVA废水的预处理。

(3)膜分离技术
膜分离技术因具有过程简单、分离系数大、无相变、高效、节能等优点而被广泛应用。其中通过超滤技术从废水中回收PVA的研究应用最为广泛。于奕峰等采用超滤膜处理实际退浆废水,结果表明,在最优条件下超滤膜对PVA的截留率为96%,COD由23 000 mg/L降低到5 700 mg/L。范苏等以多通道α-Al2O3陶瓷微滤膜为支撑体,采用溶胶凝胶法制备了完整TiO2超滤膜,其对退浆废水中PVA的截留率达到99%以上。A. Sarkar等采用新型高剪切超滤膜组件从退浆废水中回收PVA,PVA截留率达到95%以上。

尽管膜分离技术设备简单,操作方便,对PVA有很高的回收率,但其存在膜孔易堵塞、膜系统成本高、膜使用寿命短等缺陷,阻碍了它的工程推广。

(4)高级氧化法
近年来,一些研究人员在利用高级氧化法处理含PVA废水方面做了一些研究,其主要类型包括Fenton类氧化法、电化学氧化法、臭氧类氧化法、光催化氧化法、超临界水氧化法、超声氧化降解法、硫酸根自由基氧化法等。不同类型高级氧化法处理含PVA废水的效果见表1。

表1不同类型的高级氧化法处理含PVA废水工艺参数与处理效果
 

由表1可以看出,高级氧化法对PVA的适用浓度宽泛(10~1 000 mg/L),对PVA的降解率均很高(94.4%以上),有些甚至可以完全降解,且降解时间短。除采用超临界水氧化法外(温度为440 ℃),温度范围为23~30 ℃,能耗不算太高。但高级氧化法需额外投加化学试剂(如投加酸碱试剂调节pH,投加铁粉和过氧化氢等氧化剂,硫酸根自由基氧化法需投加过硫酸盐类试剂等),有些还需提供额外能耗(如电化学氧化法需要提供电能,臭氧类氧化法需要提供臭氧,光催化氧化法需要提供一定频率的光源,超临界水氧化降解法需要提供高温高压的环境,超声氧化降解法需要提供超声波源等),并会产生二次污染,增加维护成本,这些成为高级氧化法大规模工程应用的瓶颈。

© 2008- 污水宝版权所有 中国污水处理工程网 | 不良信息举报
查阅更多资料